Data collection and its use surrounds us. Our mobile phones trace where we live, work, buy our groceries, and visit friends. Today’s trip to some online shopping sites shows me ads for puppies (my children want a dog and they did a pet search earlier in the day), a New York Mets jersey (I guess I know what I am getting for my birthday), and suntan lotion (our family trip to Bermuda starts on Friday).
Business-to-consumer industries know how to collect data and turn it into information that prompts us to do things, including buying products and securing services. In some cases, these prompts are helpful (e.g., using Waze to display the best driving route and point out the nearest Dunkin’ Donuts). In other instances, they are not (e.g., getting ads for plastic surgeon–administered Botox treatments while researching self-pay clinical specialties for a scientific paper). With the advent of electronic medical records (EMR), advanced imaging, wearables, and genetic sequencing, some estimates show an annual increase of 48% in medical data collection. This translates into a growth rate from 153 exabytes produced in 2013 to 2,134 exabytes produced in 2020. An exabyte is 1 billion gigabytes. To obtain a sense of how much data that represents, let us assume a typical laptop stores 500 gigabytes of data. In 2020, the medical data expected to be produced will fit on the hard drives of 4.3 billion laptops.
Although the explosion of medical data is real, there is little evidence that all this data meaningfully impacts patient care and costs.